Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae.

نویسندگان

  • Piotr A Mieczkowski
  • Margaret Dominska
  • Michael J Buck
  • Jennifer L Gerton
  • Jason D Lieb
  • Thomas D Petes
چکیده

In the yeast Saccharomyces cerevisiae, certain genomic regions have very high levels of meiotic recombination (hot spots). The hot spot activity associated with the HIS4 gene requires the Bas1p transcription factor. To determine whether this relationship between transcription factor binding and hot spot activity is general, we used DNA microarrays to map all genomic Bas1p binding sites and to map the frequency of meiosis-specific double-strand DNA breaks (as an estimate of the recombination activity) of all genes in both wild-type and bas1 strains. We identified sites of Bas1p-DNA interactions upstream of 71 genes, many of which are involved in histidine and purine biosynthesis. Our analysis of recombination activity in wild-type and bas1 strains showed that the recombination activities of some genes with Bas1p binding sites were dependent on Bas1p (as observed for HIS4), whereas the activities of other genes with Bas1p binding sites were unaffected or were repressed by Bas1p. These data demonstrate that the effect of transcription factors on meiotic recombination activity is strongly context dependent. In wild-type and bas1 strains, meiotic recombination was strongly suppressed in large (25- to 150-kb) chromosomal regions near the telomeres and centromeres and in the region flanking the rRNA genes. These results argue that both local and regional factors affect the level of meiotic recombination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of Ageing Process by Meiotic and Mitotic Recombination within the Ribosomal DNA Genes in Saccharomyces cerevisiae

In the budding yeast of Saccharomyces cerevisiae the tandem repeated of rDNA genes are located onchromosome XII, which is in the nucleolus. There are different types of proteins in the nucleoluskeleton,silencing proteins have got important role in nucleolus.It is shown that meiotic recombination between nonsister chromatids in the rDNA genes are stronglysuppressed, and s...

متن کامل

Meiotic DNA breaks at the S. pombe recombination hot spot M26.

The ade6-M26 allele of Schizosaccharomyces pombe creates a well-defined meiotic recombination hot spot that requires a specific sequence, 5'-ATGACGT-3', and the Atf1*Pcr1 transcription factor for activity. We find that M26 stimulates the formation of meiosis-specific double-strand DNA breaks at multiple sites surrounding M26. Like hot spot activity, breakage requires the M26 heptamer, Pcr1, and...

متن کامل

Low Levels of DNA Polymerase Alpha Induce Mitotic and Meiotic Instability in the Ribosomal DNA Gene Cluster of Saccharomyces cerevisiae

The ribosomal DNA (rDNA) genes of Saccharomyces cerevisiae are located in a tandem array of about 150 repeats. Using a diploid with markers flanking and within the rDNA array, we showed that low levels of DNA polymerase alpha elevate recombination between both homologues and sister chromatids, about five-fold in mitotic cells and 30-fold in meiotic cells. This stimulation is independent of Fob1...

متن کامل

Conserved and nonconserved proteins for meiotic DNA breakage and repair in yeasts.

During meiosis DNA double-strand breaks initiate recombination in the distantly related budding and fission yeasts and perhaps in most eukaryotes. Repair of broken meiotic DNA is essential for formation of viable gametes. We report here distinct but overlapping sets of proteins in these yeasts required for formation and repair of double-strand breaks. Meiotic DNA breakage in Schizosaccharomyces...

متن کامل

Topoisomerase Inhibitors and Types of Them

Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 26 3  شماره 

صفحات  -

تاریخ انتشار 2006